Improve Micro-scale and Single-cell Optical Diagnostics

Technology #32371

Questions about this technology? Ask a Technology Manager

Download Printable PDF

Image Gallery
Schematics of the spatially resolved confocal absorption microscopy setup
Alfons Schulte, Ph.D.
Silki Arora, Ph.D.
Patent Protection

Optical absorbance measurement apparatus, method, and applications

US Patent 9,341,515

Gradient index (grin)-based absorption spectroscopy apparatus, method, and applications

US Patent 9,110,009

UCF researchers have developed absorption spectroscopy technology to measure samples at the micron and single cell level. Conventional optical probe technology required samples larger than micron size, limiting usability in fields with finite samples, including forensic analysis. This new technology is non-destructive to the sample, for continued testing and maximized data results. Researchers also note a practical and robust application for determining variation among a few microns to detect malaria and monitor fluids for blood bank quality, pregnancy, and AIDS testing.

Technical Details

Previously, micro-spectroscopy could not practically analyze a single-cell sample when unwanted stray light fell outside the absorption perimeter, letting too much light through the system. Micron level and single cell analysis can now benefit from an alternative to non-micro-spectroscopy optic analysis. Typical methods generally require labeling a sample with foreign markers, and are limited by the effect of photobleaching and quenching, where reduced output for analysis is inherent at the level of light exposure necessary to measure the sample. This technology combines a white light, capturing as broad a spectroscopy bandwidth as possible, and an algorithm-modeled lens in place of a typical microscope, correlating the scope of light to micron-scale samples.


  • Non-destructive
  • Extendable to infrared and ultraviolet
  • Can be used as an add-on for existing microscopy
  • Free of foreign labels
  • Maintain output levels


  • Optical diagnosis
  • Microfluidcs
  • Cytology
  • Medical testing
  • Forensic analysis
  • Nanomaterials characterization

Additional Technology Numbers: 32397