Protection of Mammalian Cells Through the Inhibition of Reactive Oxygen Species Utilizing Cerium Oxide Nanoparticles

Light-induced retinal degeneration and age-related macular degeneration (AMD) are two common medical conditions which lead to sight distortion and blindness. These conditions are often caused by harmful compounds known as reactive oxygen species (ROS). ROS are often generated as a byproduct of various cellular processes and/or during the retina’s exposure to UV radiation. ROS are extremely aggressive compounds which attack their surrounding tissue, causing irreversible damage over time. Currently, no satisfactory remedies to prevent the eventual outcome of blindness from these ROS exist, until now.

Technical Details

Cerium oxide nanoparticles show great potential to treat retinal degenerative conditions since studies have shown they protect neurons from apoptosis induced by hydrogen peroxide (an extremely harmful ROS) in tests on the cellular (in vitro) and whole organism (in vivo) levels. By breaking down these ROS, cerium oxide nanoparticles effectively extend the longevity of neurons and any other cells within the body which are plagued by the accumulation of these harmful chemical species.

Benefits

- The invention can potentially be used to treat virtually any disease caused by reactive oxygen species
- The therapeutics synthesis method is inexpensive and scalable to industrial quantities
- No other effective remedies exist for the prevention and treatment of light-induced retina degeneration

Applications

- Treatment of diseases:
 - Age-related macular degeneration
 - Light-induced retina degeneration
 - Neuronal death in strokes
 - Degenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s

Additional Technology Numbers: 30929, 31153, 31279, 31280, 31281

Technology #30812

Inventors

Sudipta Seal, Ph.D. • Swanand Patil

For more information, contact:
Andrea Adkins | 407.882.0342 | andrea.adkins@ucf.edu | Tech ID #30812
UCF Office of Technology Transfer | 12201 Research Parkway, Suite 501, Orlando, FL 32826